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An efficient method of computation for models possessing the Markov
property is set out. We apply this method to the two-dimensional Ising
model and report exact computations up to 10 by 10 models with periodic
boundary conditions. We find that critical-point, finite-size rounding is
quite large in the renormalized coupling constant which is not divergent
at the critical point, in contrast to the energy which is also not divergent
and has no rounding there. The difference is traced to the continuity of
the energy and the discontinuity of the renormalized coupling constant

at the critical point.
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1. INTRODUCTION AND SUMMARY

With the introduction of parallel computers, there is a strong mo-
tivation to reconsider the various methods of computation to see if the
introduction of parallel processing ideas can be beneficial. One such idea
is that of the Markov property.(®) A large class of problems possesses this
property. Consider a region R, interior to a domain D over which the
problem is stated. Let the problem variables on the boundary dR of R
be fixed, where &R N R = (). This statement is meant to include values,
derivatives, etc., where appropriate. Then the problem is said to possess
the Markov property if any expectation value of problem variables sup-
ported only in R is independent of all the problem variables supported in
D\ (R UJIR), conditional on the problem variables in 9R. That is to
say, if in the nearest-neighbor Ising model, we fix the boundary spins of an
n X n square, the expectation value of a spin in the interior of the square
depends only on those fixed boundary spins, and not at all on anything
that is outside the square. In this paper, we will investigate first how these
ideas can be profitably applied to computation of the statistical mechanical
properties of nearest-neighbor Ising-models on small, square regions of the
plane-square lattice. In addition, we will study the implications for finite-
size scaling of our results. We have a rather more complete set of data
than has been previously available for such an investigation. Our principal
conclusions are: One, the Markov property ideas are very effective for finite
size calculations [We have completed the exact computations for a 10 x 10
square (about 103°) states on a workstation.], and two, the “critical-point
rounding” of finite-size scaling theory applies, not only to thermodynamic
functions which diverge at the critical point, as is usually discussed, but

also to functions which are finite at the critical point such as the renor-
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malized coupling-constant g, which turns out to be strongly “rounded.”
Never-the-less, the energy is not rounded, as was already known,('?) and

may have lead some unwary not to be alert to this possibility.

In the second section, we describe the necessary formalism to decom-
pose a problem into small blocks which can be summed over independently,
and so computed in parallel. When there are only a finite number of types
of small blocks, this computation can be done in advance, and the results
saved for future use. We carry this formalism as far as the four-point
correlation functions which are necessary to compute the second partial
derivative of the magnetic susceptibility with respect to the magnetic field,
and also far enough to compute the correlation length, the energy and the

specific heat.

In the third section, we show how this formalism can be utilized to
compute progressively larger blocks by tabulation and relatively short com-
putations. We show how these blocks can be simply combined to produce
finite squares with periodic boundary conditions. Specifically we are work-
ing on the two-dimensional Ising model and we use diamonds for our blocks.
It is straightforward to make bigger diamonds from smaller ones and also to

compose squares with periodic boundary conditions out of the diamonds.

In the final section, we report and analyze our numerical results. We
report the energy, the correlation length, the magnetic susceptibility, its
second derivative with respect to the magnetic field, and the renormal-
ized coupling constant for 2 x 2, 4 x 4, 6 x 6, 8 x 8 and 10 x 10 Ising
model squares with periodic boundary conditions. We report the behavior
of x/&V¥, (8%x/0H?)/x(¥+22)/7 and the renormalized coupling constant
and find strong, critical-point, finite-size rounding for all of these ratios,

even though they are finite at the critical point. The rounded value for
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the renormalized coupling constant is seen to be an intermediate value be-
tween the thermodynamic values for temperatures above and below the
critical temperature, as the critical temperature is a point of non-uniform
approach for this quantity. This effect is in sharp contrast to that for the
quantities usually discussed. In those cases the values, although rounded,
still converge to the expected result! We also report on Binder’s cumulant
ratio.(®) Our results for it at the critical temperature agree with the those

of Burkhardt and Derrida(®) obtained by the transfer matrix method.

2. BLOCK DECOMPOSITION FORMALISM.

In order to use this method, there are a number of straightforward
rules for combining the results obtained by the summation over the interior
of a block. They are fairly simple extensions of the one dimensional results
given in Baker(®). I give them in this section. The first rule is that the entire
finite section of a space lattice on which the model under consideration is
defined should be divide into smaller blocks. The surfaces of division pass
through the vertices only and not through any of the edges of the underlying
lattice. It is not necessary although often convenient that all the blocks be
identical. We will specifically be interested in the following quantities. The

magnetization,

M =[£]1 Y (on), (2.1)
el

where L is the finite section of the space lattice over which the problem
is defined, o7 are the “spin variables” of the model, |£| is the number of
vertices in £, and ( ) denotes the expectation value with respect to the

weight function,

(Z(K,H)exp [ KY Y 0w, s+ HY or| [[[f(on)dod, (22)

€L §ep TeL €L



where K = J/kT with J the exchange energy, k Boltzmann’s constant and
T the absolute temperature, H = mh/kT with m the magnetic moment
and h the magnetic field, and Z(K, H) is the partition function and is
defined by the requirement that the weight function (2.2) be normalized.
The single-spin distribution function is given by f(o). The set D is one half
the set of nearest-neighbor vectors on the space lattice. It is chosen so that
every edge of the lattice is counted once and only once. I have deliberately
chosen to consider the case with only nearest neighbor interactions. If there
are further neighbor interactions, the boundary of the blocks is necessarily
thickened, and although straightforward, the treatment of the block-block
interactions becomes much more elaborate.
The next quantity of interest is the energy,
=LY ) (o g)- (2.3)
€L §ep

In addition we are concerned with several more thermodynamic quanti-
ties which require multiple sums over the lattice. Specifically we consider
the specific heat at constant magnetic field C'y, the magnetic susceptibil-
ity x(K), the second moment definition of the correlation length £(K),
and the second derivative with respect to magnetic field of the magnetic

susceptibility. They are given by,

=17 Y (oo —<cw;+5><cr~cff+e>)(2 .,

€L §ep JEL e

=1L[7 )0 (o), (2.5)

TEL JEL

E(K) = 1L]7H YD 7= 1P {ow7) | /[2dx(K)), (2.6)

el jeL

8H2 = 173N ST S owgogop - BlLl (KR (27)

€L JEL & kel ZEL
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where d is the spatial dimension.
It is now convenient to introduce the block spin sums,
S, = w(v,i)oy (2.8)
TEB,
where B, is the portion of the space lattice which comprises block v, and

w(v,7) is the fraction of site 7 in block v and is subject to the constraints,

S w,7)=1, Vi (2.9)

It follows immediately from (2.9) that w = 1 for any interior spin. Normally,

in for example two dimensions, w = % for a spin on an edge, and w = 1

ZOI’

% for an exterior or interior corner spin respectrively on the square lattice.
It could also be w =

or or

wWin

1 5 . .
3 or 8 for a corner Spin on a trlangular

o=

lattice. We will now divide the sites on the lattice into those sites which
are interior to some block, and the rest which we will call boundary spins
and which set we will denote by B. It is necessary in this decomposition
that no interior spin of one block be a nearest neighbor on the lattice to an
interior spin of any other block. By (2.8) and property (2.9), We can write,
Za;: ZS,,. (2.10)
el v
If we next define ( )¢, as the constrained expectation value with respect to
(2.2) within the vth block, with all the boundary spins fixed. We further
define ( )5 to be the expectation with respect to the boundary spins. With

this notation, we can write,

M = ||} <Z (Su)e, [T Ve, >

v H

= ||t <<Z <<‘31”>>CC) H<1>cu> (2.11)



We observe that (2.11) has the form of a new quantity,

(Su)e,
(e,

which depends only on the boundary spins of 5,, which set we denote

[5.] =

(2.12)

as 0B,, whose expectation value we are taking, with respect to all the

boundary spins, B = U, 08, by the use of an additional weighting factor,

[TWe,, (2.13)

©
as displayed by (2.11).

It is instructive to go through in some detail the reduction of the

susceptibility (2.5) to block form. By (2.10) we can write it as,

X(K) = |£]~ 12255

which by the Markov property,

:|a|—1<z<<s2> (58 + DT >
= |L[” 1<{ ([52] — +ZZ[5u][5 }H (1)c > ,
(

B

=1L~ ((Ta - T3+T1)H<1>C)\>7 (2.14)

B
in the notation of (2.12) and where we define,

=>[S), Ta=>[S2, Ts=> [S.). (2.15a)

In order to compute the second partial of the susceptibility in block decom-

posed form we will need the further quantities,

To=Y (S8l To=Y [SS2, To=) [SF,
=S54, Te=Y IS8, To =S [SAIS.P,  (215h)
Tip = 2[53]2, T = Z[S,,]4.



With this notation we can directly express the intermediate quantities,

Ti=Y (on)

-
(2

= <T1 H<]‘>CA> )
A B
)

=YY s
T 7

i),
Ts = ZZZMN (2.16)

— <(T13 — 3T\ T3 + 2T + 3T, Ty — 3T5 + Ty) H<1>CA> ,
A B
Ta=)_ > > > (owmpop
O
:<(T14 — 6T2Ts + 61Ty — 6T5Ts + 8T T — 121115 + 4T, Ty + 312

+ 3T§ — 6111 + 12Ty — 3Tho — 4T + T%) H<1>CA> '
A B

From these intermediate quantities, we can directly express the block de-

composition formulae,

M(K)=Ti/|L],
x(K) = T2/|£], (2.17)
?x(K)

= — K))?
X = Tafl ] = 3LHX(K))

The method of derivation of (2.16) is most simply expressed as follows.
Consider, for example, the work for 73. The need is to find which parts

are evaluated internal to a block and which parts are evaluated in separate
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blocks. We may rewrite 73 as

T3 = <ZZZ(1 — b12 + 012)(1 — a3 + d23)

vy V2 Vaz

X (1 - 613 + 613)[‘91/151/2‘91/3] H<]‘>C)\> ’ (2]‘8)
A B

where we have extended the bracket notation as

] 1= eq{Se; (2.19)

jeT Hj€J<1>Cj ’
and 0;; = 1 if v; = v; and 6;; = 0 otherwise. The notation in (2.19) is
meant to imply that if there is a repeat among the elements of 7, that
the corresponding S; appears as a power equal to the multiplicity m in the

numerator (S}-”)C»j and the products on the right hand side are only over

distinct elements. We next expand (2.18) as

Ts =<{ DD > (1= 812)(1 = 823)(1 = 613)[Su, ][50, 0]

vy V2 V3

+3(/) D) (1= 82)[SE,][S0]

+(4) Z[Sffa]} H<1>CA> ) (2.20)
V3 A B

where use has been made of the property (1 — §)? = (1 — §). There is a
combinatorial interpretation of the coefficients. We have expanded in terms
of the “4+4” terms. They have the property of making the v’s agree and
hence can be thought of as bonds (of infinite strength) between the vertices
labeled by the values of v. Since v; = vy and vy = v3 implies vy = vg,
these relations turn out to imply that the coeflicients are the strong em-
beddings of the linear graph shown in the little picture in parentheses on
the complete three graph (triangle). This remark is not such an improve-

ment over straightforward calculation here, but is fairly helpful for 7;. By

9



a “strong embedding” is meant one for which the nearest neighbors on the
underlying graph must also be nearest neighbors on the (unlabeled) em-
bedded graph.(!®) If this restriction does not apply, then we say we have
a “weak embedding.” If we now expand the (1 — J) factors in (2.20) and
collect the terms we obtain directly the results of (2.16). Note is made
that the coefficients that we obtain for this expansion are the weak em-
bedding coefficients. The details of the computation for 74 are given by
Baker,(®) as his one-dimensional special case has no effect on this portion
of the computation.

The block decomposition of the energy is quite straightforward. By
our rules, every edge lies in a unique block. If we define an edge e; by the
two vertices 71, 7o which lie at its ends, then with the notation

E,= Y op0p. (2.21)
e;EB,

We easily get,

E =7 & [[(Wen)s, (2.22)

where
&=S(B) &=Y[F &=> 5P (2:23)

The results for the specific heat are simply given by the same methods as

Cu =|L]™ <(52 — &) H<1>cx> ) (2.24)
B

A

The last quantity of interest is the correlation length (. We will not
use (2.6) directly, since the factor |7 — J|? can get quiet large. While it is
true that the coefficient of this factor decays exponentially, if we wish to
apply this method later to Monte Carlo estimation, then this feature causes

unduly long runs. (We will not discuss Monte Carlo methods in this paper,
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but intend to do so in subsequent work.) Instead we will derive it from the
momentum dependent susceptibility.(1®) We extend (2.5) to be,

XL K) = [£]71) Y expliq- (7— P{ow3)

TEL JEL

= Z Z exp|iq - (ﬁy — RN)]<SV(§)S;(§)>7
— £ (2.25)

where E,, is the origin of block B,,, * denotes complex conjugate and
S,(d) =Y w(v,))explig- (7— Ry)]oy. (2.26)
JjEB,

If we extend in a similar manner the definition (2.15) to give,

7) = [5.(@), Ta(@) =D 8. Ts(3) = D_ ISP
’ ’ ’ (2.27)

then we get

A

x(|£|,6f,K)=|£|_1<(T2(9T)—T3( )+ (@) TT(n) >, (2.28)
B

which reduces to (2.16 - 17) when ¢ = 0. To obtain {(K) from x(|£|, ¢, K)

we first note(10) that

2 _ 1 - X("C"aq; K) —12
) = rer e (1 e ) Houat. e29)

to the given order where e, are the unit vectors in each of lattice directions.
This formula is exact for the Guassian model on the hyper-simple cubic
lattice family. For a finite lattice section, of course the ¢ are a discrete
set of vectors, however for a large lattice section, there will be many of
them which are small enough to use this result effectively. For the one-

dimensional Ising model, Baker(®) has shown that

d

- —1 d
4Zsin2(%(j-er) (1 — M) =¢2 +4Zsin2(%gf-er). (2.30)

T=1



These remarks suggest that a good procedure to determine £ is to select a

method which assumes the form (2.30), at least for small |§]|.

3. BLOCK COMPOSITION

One can start with the direct computation of small blocks, and use the
formalism of the previous section to combine them to form larger blocks
in a much more efficient manner than by the direct computation of the
larger blocks. This result is a consequence of the Markov property. I will
illustrate the method in two dimensions. It appears that the most efficient
way to break up the plane square lattice is to divide it into diamonds. The
simplest such diamond is illustrated in Fig. 1, and has two vertices on each

side. The weight function (unnormalized) and the block spin are

exp (K (o1 + 02 + 03+ 04)05), S = %(01 + 03 + 03 + 04) + 05,

E = (0'1 + 09 + 03 + 0'4)0'5 (31)

where o5 is the single interior spin and the rest are boundary spins. For the

Ising model case, where the spin states are just o = +1, we can compute,

(1)e =2cosh(K (o1 + 09 + 03 + 04)),
[S] :i(o’l + 09 + 03 + 04) + tanh(K(oy + 03 + 03 + 04)),
[5%] =& (01 + 02 + 03 + 04)? (3:2)
+ 2 (01 + 02 + 03 + 04) tanh(K (01 + 03 + 03 + 04)) + 1

etc.,

where the necessary unlisted quantities are [S®], [S*], [S(7)], [|S(Z)|*], [E],

and [E?]. They can also be computed in a straightforward manner, and
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tabulated numerically as a function of the 16 possible boundary conditions
for fixed K. The next simplest diamond has 3 vertices on each side and is
illustrated in Fig. 2. There are 5 interior vertices and 8 boundary ones. The
required computation is a sum over 32 states for each of the 256 possible
sets of boundary conditions. Of course, not all need to be computed because
the model has spin reversal symmetry, and the diamond has a rotation and
a reflection symmetry. In any event, this computation is very quickly done

on even on a personal computer.

With these basic blocks (although the direct computation of the 3-
diamond was in fact unnecessary) we can construct larger diamonds. For
example, the four vertices per edge diamond can be built up of five 2-
diamonds and one 3-diamond as illustrated in Fig. 3. There are now 12
boundary spins and 3 internal spins which must be summed over to compete
the calculation. That is a sum over 8 states for each of the 4096 possible

boundary conditions.

We have found it quite possible to compute the tables for the 5-
diamond and the 6-diamond. They were divided as shown in Fig. 4. There
are four 3-diamonds in the 5-diamond, with 16 boundary spins or 65536
possible boundary conditions and 5 internal spins or 32 states to sum over.
It was convenient to introduce the 3 X 4 diamonds as shown in Fig. 4 as
well to compute the 6-diamond. It is broken up into one 3-diamond and
two 2-diamonds and so has 10 boundary spins or 1024 possible boundary
conditions, but just one internal spin and so just 2 states to sum over. The
6-diamond is broken up into one 4-diamond, two 3 X 4 diamonds and one
3-diamond. There are 20 boundary spins or 1048576 possible boundary
conditions and 7 internal spins or 128 states to sum over. The result is

equivalent to a sum over the 41 internal spins or 2.2 x 10'2 states for each
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of the 1.0 x 10° possible boundary conditions. Attention must be paid to
the orientation of the 3 x 4 diamond in computations involving S(¢). There

may be a storage problem for the 6-diamond tables on some computers.

When periodic boundary conditions are used, it is possible to com-
bine two diamonds of the same size to form a square. This construction
will be the basis of the numerical results for square systems with periodic
boundary conditions which are given in the next section. The construction
is illustrated in Fig. 5 A for squares whose edge length is even. The lower
diamond is divided as shown and the pieces are shift by the system period-
icity so that the two triangles labeled with the same letter coincide. In the
final sum over the boundary spins the corresponding boundary spins on the
two triangles are set equal to each other. For squares whose edge length is
odd, the construction is shown in Fig. 5 B. Here we use an (n+1) X (n+2)
rectangle, an (n+ 1)-diamond and two trapezoidal bridges of unit thickness
and edges (n + 1) and (n + 2) to form a (2n + 1) x (2n + 1) square. These

bridges have no internal spin sums to be done.

4. EXACT CALCULATIONS FOR THE PLANE-SQUARE ISING
MODEL.

A great deal has been written about finite-size scaling theory. See
for example, Barber,(®) Cardy(®) and Privmann.(!%) In its most elementary
form, it is very compelling. That is to say, in models such as the Ising
model for which we know that, except at the critical point, the spin-spin
correlation functions decay strongly with distance, we expect validity of
the following simple idea. That is, if the ratio of the correlation length

to the system size £/ L is sufficiently small, then the difference between the
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estimates of extensive properties estimated from a finite sized system of side
L and those estimated from an infinite system can be made as small as one
pleases by choosing L large enough. Since one never has an infinite system,
a series of computations for progressively larger systems is commonly made
for a set of different values of £ /L and these results are then extrapolated to
infinite system size. The results of the extrapolation to infinite system size
for the different values of {/L are then extrapolated to give the result for
the value £/L = 0. Beyond this simple idea are the deeper ideas which can
be introduced as follows: Since the correlation length £(K) in the infinite
system is a monotonic (at least for the two-dimensional Ising model and
numerically much more generally) function of K which runs from 0 to oo

as K runs from zero to K., there is manifestly a function ®(z) such that

§0(K)/L =2 (¢(K)/L). (4.1)

The theory further shows, from various hypotheses that there exists the
limit,

Pe(x) = ]:lgrolo Or(z), VO<z< oo, (4.2)

as a smooth function. For x small, it must be

lim ®¢(z)/z =1, (4.3)

z—0

as all the ¢2(K) = K + O(K?). Note is made for future reference that
this theory includes the so called finite-size scaling hypothesis that “close
to the critical point, the microscopic length (lattice spacing) drops out.”
(Cardy(g)) A cautionary note has been mentioned by Brézin(") who says
that finite size scaling in this form holds only if “there is no singularity at
the fixed point.” He further points out that this hypothesis fails for spatial

dimensions greater than or equal to 4 and “finite-size scaling does not hold
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there.” One of the main accomplishments of this theory is the description
of the phenomena of “finite-size rounding” of the peaks of thermodynamic
functions such as the specific heat and the magnetic susceptibility. In the
region of this rounding less general expressions are used, where the asymp-
totic form near the critical point of the divergent thermodynamic quantities,
e.g. £ x (1 — K/K_.)™", replaces the quantities themselves in at least part

of the expressions. For example,

X(E,L) = D7y (1~ K/K)DV")

§(K, L) = Lge (1 - K/K)LMY), (4.4)

as x x (1 — K/K.)~7, and for this model, v =1, v = %. These equations

can be combined to give,

Dy ((1 - K/KC)LI/V) _ gv/vqﬁ ((1 _ K/KC)Ll/”) . (4.5)

= ¢V -
X [QSE ((l_K/KC)Ll/u)}'Y/U

With this very brief sketch of some of the most elementary ideas of
finite-sized scaling, it seems worthwhile to look at how they might apply
to good numbers for small systems. By means of the method described
in the previous section, we have computed the energy, susceptibility, the
second derivative of the susceptibility with respect to magnetic field, the
correlation length, and the renormalized coupling constant for a series of
temperatures. We have been able to carry out these calculations on the
plane square lattice for square shaped Ising models of sizes 2 x 2, 4 x 4,
6 x 6, 8 x 8 and 10 x 10. The last one corresponds to 2! ~ 1039 states and
was carried out on an IPC sparc station. It required about 30 hours per
temperature point in double precision. The only comparable computation
that I know of is the computation of Bhanhot and Sastry(® on the 4 x 5 x 5

Ising model on the CM 2, however they computed only the energy-type
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properties and neither the magnetic ones nor the correlation lengths. They
pointed out that if one could generate one state every nanosecond, then it
would take 4 x 10'3 years to generate every state for a system this size.
Our previous discussion suggests that form (2.30) should be asymptotically
valid for small values of |g]. We find this to be so for this model, where
we can check the results against the high-temprerature series results. The
procedure we have used is to determine the correlation length by means
of fitting (2.30) at the 5 points Aké,, Aké,, 2Ake,, Ak(€, + €,), 2Ake,
where the €,, €, are unit vectors and Ak is the smallest value of |¢| allowed
by the lattice size and periodic boundary conditions. This fitting method
was used, instead of just using two points, with an eye to the future use of

these methods in Monte Carlo simulations for larger systems.

Table I. Table of the energy for the plane square lattice

K/K.

2x2

4 x4

6x6

8 x 8

10 x 10

0.100
0.300
0.500
0.700
0.800
0.900
0.950
0.975
1.000

0.1771679
0.5489016
0.9428091
1.3099640
1.4642432
1.5933258
1.6482621
1.6734075
1.6970563

0.0885999
0.2783203
0.5199468
0.8863070
1.1227929
1.3618280
1.4699288
1.5194582
1.5656238

0.0884237
0.2724371
0.4826229
0.7724472
0.9892828
1.2587608
1.3945347
1.4579043
1.5168731

0.0884233
0.2723005
0.4793137
0.7425588
0.9320508
1.1991423
1.3507235
1.4236104
1.4915891

0.0884233
0.2722971
0.4789980
0.7347526
0.9076892
1.1613832
1.3213946
1.4013081
1.4762429

The value of the energy at the critical point is known to be v/2 ~

1.4142136. If we plot the values of the last line in Table I against 1/L we
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get a nice straight line. The linear projections from successive pairs, are
1.434191, 1.419372, 1.415737, 1.414858, (4.6)

which is quite consistent with the limiting value, 4/2. This asymptotic
form was previous given by Ferdinand and Fisher(?'3) together with an
evaluation of the coefficient of 1/L. It is worthwhile to review at this point
some of what is rigorously known. Ruelle('®) and Baker(!) showed that the
limit . — oo exists for the free energy per unit volume and is equal for free,
periodic, and Dirichlet boundary conditions. It has further been shown for
the various multi-spin expectation values (since all are easily bounded from
above for the Ising model) that a uniquee limit as L — oo exists for Dirichlet
boundary conditions. The energy is just twice the nearest-neighbor, spin-
spin correlation. It is bounded from below for our case of periodic boundary
conditions by the, monotonically increasing with system size, results for
the Dirichlet boundary conditions. As it is the case(!2) that the results for
periodic boundary conditions for this model are monotonically decreasing,
they too must tend to a unique limit. In this model we expect that the
limits will be the same because the energy is continuous in the temperature
in the usual thermodynamic limit at 7" = 7T, and so the rounding of the
specific heat peak is not sufficient to show an effect in the infinite-system-
size energy dependent on the mode of approach to the limit or on the
boundary conditions.

If we plot, Fig. 6, the data in Table II in the form of £, (K)/L versus
&(K)/L we can see the data collapse implied by (4.2) begining to emerge.

We have used the simple approximation,

(k) = | (066384245 — 0.09664K /K.
~Vk. 1- K/K, ’

which is good enough for graphical purposes.
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Table II. Table of the correlation length squared

for the plane square lattice

K/K.

2% 2

4 x4

6 X6

8 x 8

10 x 10

0.100
0.300
0.500
0.700
0.800
0.900
0.950
0.975
1.000

0.0528362
0.2349489
0.6035534
1.3496262
1.9729358
2.8597122
3.4350623
3.7630798
4.1213202

0.0530809
0.2489436
0.7493571
2.2885548
4.1107948
7.4223444
9.9433196
11.490710
13.261699

0.0530814
0.2492733
0.7647760
2.6433584
5.5213833
12.245941
18.296725
22.295547
27.078371

0.0530814
0.2492809
0.7661723
2.7488237
6.2777440
16.674618
27.877511
35.931821
46.057374

0.0530814
0.2492811
0.7663055
2.7776601
6.6365399
20.342144
37.972886
51.844726
70.243521

Table III. Table of the susceptibility for the plane square lattice

K/K.

2x2

4 x4

6 x6

8 x 8

10 x 10

0.100
0.300
0.500
0.700
0.800
0.900
0.950
0.975
1.000

1.1926232
1.6818679
2.2761424
2.8625812
3.1140275
3.3259424
3.4164830
3.4579876
3.4970563

1.2029176
1.8571952
3.2174771
6.0806596
8.1550547
10.319413
11.307150
11.759990
12.181742

1.2029381
1.8612700
3.3207033
7.4708853
12.030997
18.500643
21.892778
23.482752
24.959397

1.2029382
1.8613647
3.3301475
7.9018527
14.277760
26.499145
34.173759
37.917550
41.402340

1.2029382
1.8613671
3.3310512
8.0218031
15.394867
33.541128
47.404871
54.554732
61.256766

~

We might expect that (4.5) ¢(z) &~ 2.597, the value predicted by series

analysis Baker,(?) and exact solutions (Tracy and McCoy,(”)) for an infinite
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system, since this quantity does not diverge, and both x and £ are derived
from the same set of two-point correlation functions. If we use the data in
the last lines of Tables II and III, we can compute the estimates for &(0)

from the 2 x 2,...,10 x 10 results,
1.0128516, 1.2689226, 1.3921607, 1.4509021, 1.4837939, (4.7)

which appear to be converging. If we plot these values against 1/L, they
form a downward curving plot, from L = 4 onward. Thus the limit would
appear to be less than 1.615, the last linear extrapolation. Analysis of other
data in those Tables is not inconsistent with ¢(co) = 2.597 which relates
to the thermodynamic properties, but the data are insufficiently extensive
to be more definite on this point. It is however reasonably clear that QAS
is not a constant. In this case, in contrast to the energy, the method of
approach to the limit does matter. Since the limit, for the nearest-neighbor
spin-spin correlations is unique, it is reasonable to suppose that the limit
for all the (ogo7) are unique for fixed 7 and the rounding effects come from
the behavior where the limit of |7'|/L # 0. (See also, Binder.(®))

An additional thing to check, where the discrepency is perhaps clearer,
is comparison of the data in Tables III and IV. Here, since 8%y/0H?
(1—- K/K.)""22, we expect, as (7 + 2A)/y = 22/7, that

0%x

R = —521;1/27 _ ((1 . K/KC)LI/”> : (4.8)

where again we might expect that ¢(z) = 4.93 as predicted by series analysis
and exact solutions, in the absence of different, finite-size roundings. If we
use the data in the last lines of Tables III and IV, we can compute the

estimates for ¢(0) from the 2 x 2,... ,10 x 10 results,

1.7989033, 1.7015941, 1.6788236, 1.6701881, 1.6659136, (4.9)
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Table IV. Table of —

9%
OH?2

for the plane square lattice

K/K.

2x2

4 x 4

6 x6

8 x 8

10 x 10

0.100
0.300
0.500
0.700
0.800
0.900
0.950
0.975
1.000

3.8934981
12.236472
29.751612
55.215452
68.642864
81.131933
86.795217
89.456859
91.999930

4.0994029 4.1001545 4.1001567

19.790775
121.11544
763.51622
1644.8706
2953.1381
3682.3435
4044.0651
4396.2815

20.142356
146.22125
1820.7032
6783.0126
20225.894
30361.803
35839.108
41334.453

20.154205
149.70451
2445.1974
13713.541
69246.927
128586.25
164421.32
201763.97

4.1001567
20.154591
150.13863
2696.5710
19560.869
160961.74
377428.45
526633.92
689322.40

which appears to be converging to a value less than 1.666. In this case, the
values of R begin at 2 for K = 0, rise to a peak and then fall back to the
vaules in (4.9) as K — K. The height of the peak is steadly increasing as
L increases, but has not yet reached the expected value of 4.93. Again the

numerical results are not inconsistent with expectations.

One quantity of considerable interest is the renormalized coupling con-
stant ¢g*. In the field theory implementation of the renormalization group
theory of critical phenomena, it is this quantity which is the key parameter
of the theory and is universal for models within the basin of attraction of
the renormalization group fixed point. If it is non-zero (it can be proven to
be both non-negative and finite), then the theory predicts that the hyper-
scaling relations between the various critical indices hold. These are the
critical index equalities which depend explicitly on the spatial dimension.

If g* = 0, as is true for spatial dimension greater than or equal to 4, then
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Table V. Table of g(K) for the plane square lattice

K/K.

2x2

4 x 4

6 x6

8 x 8

10 x 10

0.100
0.300
0.500
0.700
0.800
0.900
0.950
0.975
1.000

51.808555
18.411918
9.5147184
4.9926543
3.5878770
2.5647206
2.1647246
1.9880319
1.8253489

53.371676
23.048720
15.612763
9.0230958
6.0166146
3.7362217
2.8965870
2.5448217
2.2339195

53.379140
23.324685
17.338683
12.340676
8.4873375
4.8254954
3.4622024
2.9150168
2.4503126

53.379164
23.335320
17.619010
14.246532
10.715831
5.9139940
3.9496174
3.1827194
2.5556106

53.379164
23.335690
17.657446
15.086509
12.436396
7.0334853
4.4229810
3.4130244
2.6152185

those relations may no longer be valid. The definition is

0% x(K)
_ v am?
) = = e ey
9" = m 9(K), (4.10)

where a is the lattice spacing, v is the volume per lattice site and d is the
spatial dimension. The value for the d = 2 Ising models on both the plane
square and the triangular lattices is estimated to be 14.66 4+ 0.06 by series
methods.(?) The results of our computations for the renormalized coupling
constant are given in Table V. If we plot g(K.) against 1/+/L, we get a
curve with a small negative curvature for L > 4. The last two points give
a linear extrapolation of about 3.12, thus it would appear that the infinite
size limit is no greater than this value and so much smaller than the 14.66
quoted above. This point is apparently a point of non-uniform approach
in K and L as will be further discussed below. Since, for two dimensions

9(K) x 1/K for small K, it is more convenient to display these results in
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the form of Kg(K)/K. versus K/K,. as shown in Fig. 7. By a comparison
of these results with the series solution for g(K) for an infinite system, and
our results for {,(K) we see that the finite size results are an accurate
reflection of the infinite limit within about one percent or so, so long as
¢§/L < 1/(7 £ 1). This restriction is more severe than is often used in
practice, and the corresponding ®,(x) (4.2) is, of course, fairly closely z
in this region. The error increases quite rapidly beyond this point and the
evaluation of g becomes quite significantly inaccurate for values of the ratio
only modestly larger and the use of such a larger ratio can lead to results

with large errors due to the strong rounding effects.

It is of interest to note that the quantity ¢g* for which the limit in
(4.10) is taken for K > K, instead of as indicated therein, has quite a
different value. To compute it, we use the series analysis values of Essam
and Hunter,(!!) plus the exact value (instead of the spherical moment def-
inition which we use elsewhere) for {_(K) = 1/[8(K — K.)]. The result is
g* ~ —656 The main reasons that this value is so different from that on
the other side are that 8%y /0H? changes sign and the amplitude for x_
is only 0.02568 instead of 0.9624 for x4. In this context, we see that the
“rounded value” of ¢g* computed at K = K, is intermediate between that
for gx4 and g*. This situation is in contrast to that for the energy, which
as we have pointed out has no rounding and is continuous at K = K.. The
effect of the rounding on g* is really quite different from that on quantities
which are usually discussed. For example, the specific heat is rounded, but
never-the-less, the value computed as the system size goes to infinity for
K = K., is infinity, which is the correct thermodynamic value. But, to

reiterate, the same is not true of g* since the critical point is a point of

non-uniform approach and different values are obtained, depending on the
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direction of approach. The same effect is expected in the three-dimensional
Ising model(*)) because 8%y /OH? also changes sign and is discontinuous at
the critical point in that model.

It is also of interest to consider Binder’s cumulant ratio.(%) It is closely

related to g(K) and is defined for K < K. by

~Px(K)

O0H?
Up = —%4 4.11
L 3042 (K) ( )

for a system of size L at inverse temperature K. Binder argued from finite
size scaling theory that Uy, is a universal function of £/L. For K < K., the
theory indicates that it goes to zero as L — oo, while for K > K. it goes
to % Exactly at K = K. it goes to a fixed point value U*. From the data
in Tables III and IV, we find, as a function of L for K = K. that

Ur = 0.62690394, 0.61719935, 0.61435622, 0.61304536, 0.61234053,
(4.12)
while for K/K,. = 0.975,

Ur = 0.62342690, 0.60920435, 0.60177682, 0.59562973, 0.58982438.

(4.13)
The values for K = K, agree with those given by Burkhardt and Derrida(®
to the accuracy that they quote. The recommended way to locate the
critical point by this method is to look at the crossing of U; and Uy,
for L # L'. Because of the structure of these functions, they should be
equal and have different slopes at the critical point. We find by linear
extrapolation that Us and Uy cross at K g 10/K. ~ 1.00345 which is an
order of magnitude more accurate than the peak location for the specific

heat(2) which is at about Kpear /K. &~ 0.965.
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A key problem for people who attempt to deduce the behavior of the
thermodynamic limit from the behavior of finite size systems is how to ex-
trapolate to the infinite limit. It is worthwhile to consider the different
cases that can arrise. For small values of K, we consider the series ex-
pansion in K, for example, for the susceptibility. The difference between
the finite system with periodic boundary conditions and the infinite system
first appears in the Lth order. The graphs which represent the suscepti-
bility are certain connected graphs which have just two odd vertices. In
Lth order, the L-edged, straight-line graphs of the infinite system instead
overlap their beginning and end points and form L-edged polygons with
no odd vertices. This change gives a correction from the infinite system
to the finite one of —4K " as the leading order correction. Hence the error
for small K is basically exponentially decaying with system size. At the
critical point, as we have seen above from finite size scaling theory, the

1 which has the value zero at the critical

behavior is best thought of for xy~
temperature. Here the error is given by 1/[®,(0)L"/*] and is a power law.
For the intermediate values of K, these results suggest that the error may
again decay exponentially asymptotically, but manifests this behavior only
for increasingly large system size with an intermediate region of power law
decay. As we saw, for K = K_, the error in the energy decays like 1/L, but
for ratios of divergent quantities, for example g, the effects of rounding are
such that the limit as L — oo for K = K. gives a rounded answer which
is different from the thermodynamic answer. In these cases a double limit
is in principle necessary, where we first estimate the behavior as L — oo
and then the limit as K — K. For a predetermined level of accuracy, this

double limit can be replaced by a single limit with K —+ K, and L — oo

together. The physical argument is that the correct thermodynamic limit
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is obtained by “finite-size scaling” for values of £ (K)/L sufficiently small
and thus the limit is taken for L — oo with £/L held fixed. Some investiga-
tion of what “sufficiently small” means must be carried out by considering

various cases where {1,(K) is big compared to unity and small compared to

L.
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FIGURE CAPTIONS

Fig. 1. The smallest or 2-diamond embedded on the plane-square lattice.
Vertices 1 - 4 are boundary vertices and vertex 5 is interior.

Fig. 2. The 3-diamond. Vertices 1 - 8 are boundary vertices and vertices 9
- 13 are interior.

Fig. 3. The 4-diamond as decomposed into smaller diamonds. Vertices 1-
12 are boundary vertices and vertices 13 -15 are the interior vertices
which remain to be summed over.

Fig. 4. A. The 5-diamond as decomposed into smaller diamonds. Vertices 1
- 16 are boundary vertices and vertices 17 - 21 are the interior vertices
which remain to be summed over. B. The 3 X 4 diamond as decom-
posed into smaller diamonds. Vertices 1 - 10 are boundary vertices
and vertex 11 is the interior vertex which remains to be summed over.
C. The 6-diamond decomposed into smaller diamonds. Vertices 1 - 20
are the boundary vertices and vertices 21 -27 are the interior vertices
which remain to be summed over.

Fig. 5. The construction for the reorganization of two diamonds into a
square whose edge is equal the the tip-to-tip width of the diamonds.
A is for squares whose edge length is even and B is for odd squares.
The trapezoidal bridges are the shaded areas.

Fig. 6. A plot of {1, /L versus {/L. The 10 x 10 points are (), the 8 x 8,
[, the 6 x 6, &, the 4 x 4, A and the 2 x 2, 17, using the data for
K/K.=0.8, 0.9, 0.95 and 0.975.

Fig. 7. A plot of Kg(K)/K, versus K/K.. The curves are labelled ac-
cording to system size. The unlabled curve is the series results for an

infinite system.
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Fig. 1
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Fig. 2
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Fig. 3
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Fig. 4
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Fig. 5
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